Monday, 4 April 2022

Multiclass Classification with APL (Automated Predictive Library)

Common machine learning scenarios such as fraud detection, customer churn, employee flight risk, aim to predict Yes/No outcomes using binary classification models. But sometimes the target to predict has more than just two classes. This is the case of Delivery Timeliness that can have three categories: Early/On-time/Late.

From this article you will learn how to train and apply a multiclass classification model in a Python notebook with HANA ML APL.

The following example was built using HANA ML 2.12.220325 and APL 2209.

Census Income will be our training dataset.

from hana_ml import dataframe as hd

conn = hd.ConnectionContext(userkey='MLMDA_KEY')

sql_cmd =  """ 

select * from apl_samples.census 

where "marital-status" not in (

  select "marital-status" from apl_samples.census 

  group by "marital-status" having count(*) < 1500 )

order by "id"

"""

hfd_train = hd.DataFrame(conn, sql_cmd)

hfd_train.head(5).collect().style.hide_index()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

Let’s check the size of the HANA dataframe in number of rows.

hfd_train.shape[0]

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

Marital status is our multiclass target.

col_key = 'id'
col_target = 'marital-status'
col_predictors = hfd_train.columns
col_predictors.remove(col_key)
col_predictors.remove(col_target)
col_predictors.remove('education-num')
len(col_predictors)

We do a fit and ask for a final model with no more than six variables. The processing is done within the HANA database.

from hana_ml.algorithms.apl.gradient_boosting_classification import GradientBoostingClassifier
apl_model = GradientBoostingClassifier()
apl_model.set_params(variable_selection_max_nb_of_final_variables = '6',
                     other_train_apl_aliases={'APL/VariableAutoSelection':'true'})
apl_model.fit(hfd_train, label=col_target, key=col_key, features=col_predictors)

The target distribution looks like this:

my_filter = "\"Partition\" = 'Estimation'"
df = apl_model.get_debrief_report('MultiClassTarget_Statistics').filter(my_filter).collect()
df.drop('Oid', axis=1, inplace=True)
df.drop('Target Key', axis=1, inplace=True)
format_dict = {'% Weight':'{:,.2f}%', 'Weight':'{:,.0f}'}
df.style.format(format_dict).hide_index()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

At this point we choose to save the APL trained model.

from hana_ml.model_storage import ModelStorage
model_storage = ModelStorage(connection_context=conn, schema='USER_APL')
apl_model.name = 'My Multiclass Model'  
model_storage.save_model(model=apl_model, if_exists='replace')
model_storage.list_models()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

One hour or one day later …

We are back. We load our multiclass model.

from hana_ml import dataframe as hd
conn = hd.ConnectionContext(userkey='MLMDA_KEY')
from hana_ml.model_storage import ModelStorage
model_storage = ModelStorage(connection_context=conn, schema='USER_APL')
apl_model = model_storage.load_model(name='My Multiclass Model')
apl_model.get_model_info()

We request the model reports and display first the accuracy overall.

from hana_ml.visualizers.unified_report import UnifiedReport
UnifiedReport(apl_model).build().display()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

We take a deeper look with the class-by-class report:

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

Here are the variables that APL selected.

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

We want to know which variables were excluded during the training, and why:

df = apl_model.get_debrief_report('ClassificationRegression_VariablesExclusion').collect()
df = df[['Variable', 'Reason For Exclusion']]
df.style.hide_index()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

We define a new dataframe with a few rows to try the APL model.

sql_cmd = 'select * from apl_samples.census where "id" between 550 and 554 order by "id"'
hfd_apply = hd.DataFrame(conn, sql_cmd)
hfd_apply.collect().style.hide_index()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

We do a predict and ask for the top three reasons. Again, the processing is done within the database.

apl_model.set_params( extra_applyout_settings=
{ 'APL/ApplyExtraMode': 'Advanced Apply Settings', 
  'APL/ApplyPredictedValue': 'false', 
  'APL/ApplyProbability': 'false', 
  'APL/ApplyDecision': 'true', 
  'APL/ApplyReasonCode/TopCount': '3', 
  'APL/ApplyReasonCode/ShowStrengthValue': 'false', 
  'APL/ApplyReasonCode/ShowStrengthIndicator': 'false' }
)
df = apl_model.predict(hfd_apply).collect()
df.columns = ['Id', 'Actual', 'Prediction', 'Reason 1 Name', 'Reason 1 Value', 'Reason 2 Name', 'Reason 2 Value', 'Reason 3 Name', 'Reason 3 Value']
df.style.format({'Probability': '{:,.2%}'.format}).hide_index()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

One can also request the score for each class. The class with the highest score becomes the prediction.

apl_model.set_params( extra_applyout_settings=
{ 'APL/ApplyExtraMode': 'Advanced Apply Settings', 
  'APL/ApplyPredictedValue': 'true', 
  'APL/ApplyProbability': 'false', 
  'APL/ApplyDecision': 'true', 
 }
)
df = apl_model.predict(hfd_apply).collect()
df.rename(columns={'TRUE_LABEL': 'Actual','PREDICTED': 'Prediction'}, inplace=True)
df.columns = [hdr.replace("gb_score_marital-status_", "") for hdr in df]
df.style.hide_index()

SAP HANA, SAP HANA Cloud, Machine Learning, SAP HANA Exam Prep, SAP HANA Learning, SAP HANA Career, SAP HANA Skills, SAP HANA Jobs, SAP HANA Preparation

Another option is to export the model equation for scoring in stand-alone JavaScript.

apl_scoring_equation = apl_model.export_apply_code(code_type='JSON')
text_file = open("apl_model.json", "w")
text_file.write(apl_scoring_equation)
text_file.close()

Source: sap.com

No comments:

Post a Comment